ITS ATC Controller Standard Development Report

The following Standard Development Report is made in accordance with the Institute of Transportation Engineers (ITE) procedures for the Intelligent Transportation System (ITS) Standard Specification for transportation controllers.

1 Latest Version of the Draft Proposed Standard

Appendix I contains the latest recommended draft standard ITS ATC Controller Version.5.2 Intelligent Transportation (ITS) Standard Specification for Transportation Controllers.

Version 5.2 is the result of a cooperative effort between the NEMA ATC technical group and the ATC Controller Unit Working group to resolve issues that resulted in a negative vote by the NEMA members on the original 5.0 Standard. The major issue that was addressed by this revision to the standard was the inclusion of a Board Support Software package in lieu of the original plan for a complete Application Programming Interface (API). Since there was not API available, it was felt that the inclusion of a Board Support Package (BSP) was essential to provide software portability. The BSP development committee worked closely with the API working group and adopted Linux as the operating system and identified the drivers and support required to support software portability between vendors.

In addition to the BSP, the working group took the opportunity to correct various ambiguities and errors that were discovered as the manufacturers have developed prototype units. Further, CALTRANS has continued to discover errors in the original 2070 standard, and since many of the provisions of the 2070 standard also applied to the ATC Version 5.2 standard, these issues were addressed in the latest version of the ATC standard.

2 Summary Status Sheet

Appendix II contains a Summary Status Sheet for changes that were made to Version 5.0 to develop the current version, 5.2, recommended by the NEMA Task Group formed to address the NEMA NO Vote. The original ATC standard (Version 5.0) was sent to the User Community and all User Comments were reviewed and addressed at the ATC Working Group Meeting held at Houston Transtar on June 15-16, 2005. The disposition of each User Comment appears in the meeting notes.

During the Notice Of Intent To Adopt for Version 5.0 and during the NEMA ballot, there were objections to some of the sections/provisions of the standard. The standard was re-worked based on those comments and the Advance Transportation Controller (ATC) Joint Committee received a Recommended Standard after being re-worked by members of the ATC working group and the original contractor (Siemens). Several working group meetings were held (March 2005 and June 2005) and several telephone conferences were held to review the proposed changes/modifications to the standard. Subsequently, the ATC Joint committee approved the revised standard and recommended submission for SDO balloting. The standard is now being transmitted to the SDOs for final balloting.

3 History and Background of ATC Standard Development Process

At the present time, ATC controllers predominantly in use are the 2070, 170, and NEMA TS1 & TS2. While each is based on its own standard, there is no unifying standard for all controllers.
An ATC controller standard is needed because of increasing efforts to standardize and integrate transportation technologies, and because the technology on which earlier controllers are based have changed while their uses have expanded over time. With the growth in technology, controllers formerly used only for traffic signal control are now being asked to support a variety of other roadway tasks, creating greater demands on the equipment. This is particularly apparent with the communication networks on which these controllers operate and into which the controllers must be integrated. These networks operate at higher speeds than can typically be accommodated with older technology, and require knowledge of more complex communication protocols. Further, the environment in which the controllers must operate has become more complex, requiring consideration of issues that may not have influenced controller design. Ultimately, the new controller standard described here defines a basic hardware platform that encompasses a wide range of CPU designs while providing a basis from which consistent designs for advanced transportation controllers can be achieved. This goal is the result of numerous meetings and discussions with interested parties as documented below. A major goal for the ATC standard was provide a platform that will support software portability and support new technology as it becomes available.

The effort to develop a family of standards for the ATC began in the mid-1990’s when the Federal Highway Administration gathered together a group of users interested in furthering the development of open architecture hardware and software to meet the future needs of Intelligent Transportation Systems. The ATC Users Group gained the support of the Institute of Transportation Engineers to continue their work in developing standards for the ATC family of standards. The American Association of State Highway and Transportation Officials (AASHTO) and the National Electrical Manufacturer’s Association (NEMA) joined the ITE to create a joint effort.

At its August 21, 1998 meeting, the Advanced Transportation Controller Joint Committee recognized the specific need for developing an enabling national standard for a general-purpose field computing device platform and established the ATC Controller Unit Working Group to complement its already established Cabinet and API Software working groups. It tasked this new Working Group with (1) converting the Caltrans 2070 specification to an enhanced non-agency specific specification, and (2) developing a next generation ATC standard. The next generation ATC standard would focus on the definition of various interfaces associated with the standard without defining particular hardware specifics except as needed to ensure interchangeability between manufacturers at the device and module levels, interoperability in systems environments, and software portability between manufacturers for enhanced ITS application development support. The goal is a standard that, to the extent possible, embraces the best attributes of all existing national standards while avoiding the vulnerability found in earlier designs to obsolescence of particular specified components.

While the conversion of the Caltrans 2070 specification to an enhanced non-agency specific standard was seen as an excellent first step toward a national ATC standard, most of the public sector participants in the early phases of this process expressed a desire to wait until the completion of the next generation ATC standard before deploying an ATC. The next generation ATC standard aims to break down the barriers between the traditional two camps within the industry, one favoring the NEMA functional specifications and the other favoring the Model 170 specifications. Interoperability issues created, in many cases, a patchwork of equipment by different manufacturers that was difficult to integrate across jurisdictional boundaries. Many
agencies deemed this work critical enough to their mission to make significant contributions toward the standard development effort. Among the agencies indicating an early interest in deploying the new ATC standard are:

- Atlanta, GA
- Chicago, IL
- New York, NY
- Ohio State DOT
- Harris County Texas
- Florida DOT
- City of San Francisco
- City of Portland, OR
- New York State DOT
- Texas DOT
- Caltrans (California DOT)
- City of Anaheim, CA
- Oregon DOT

In July 1999, a formal agreement was reached among NEMA, ITE, and AASHTO to jointly develop, approve, and maintain the ATC family of standards. Under the guidance of a Joint AASHTO/ITE/NEMA Committee on the ATC, a Working Group was created to facilitate the development of the ATC standard.

In response to direction given by Federal Highway Administration representatives at the April 19, 2001 Program Review Meeting, an expedited program, aimed at reducing standard development time to approximately 14 (fourteen) months, was instituted. Prior to this request, standards development work for the Advanced Transportation Controller was conducted principally through the efforts of dedicated volunteers constituting the Working Group. Funds expended went largely to pay travel costs for the public sector representatives involved in the programs. The potential benefits of a single unifying standard was readily seen by many agencies who rapidly embraced the novel concept of an expedited standard development effort using a contractor team in place of the more traditional volunteer working group. Following the FHWA directive, a contract was awarded to Siemens Energy & Automation, Gardner Transportation Systems Business Unit (GTS), by ITE, based on a proposal submitted by this group on June 7, 2002. The process by which the contractor would develop the standard, as agreed to in the contract and project management plan, was determined by ITE to be consistent with its Recommended Practice for Standards Development.

Specifically, the contractor was asked to:

- Define a standard for ATC, making maximum use of existing materials developed to date.
- Integrate the effort with ongoing work of standards development efforts in ATC API\(^1\) and ITS Cabinet working groups to ensure compatibility.
- Facilitate review of the draft standard by appropriate review bodies and revised as indicated in a timely manner.
- Complete all work within allotted one-year period.

\(^1\) API – Application Programming Interface remains incomplete at this time and is no longer a part of the ATC controller unit standard.
4 Status of the Standard Development Process

The ITE directive to the contractor team was to develop a consensus based standard for a field-hardened, general purpose computer for embedded applications that can, with the appropriate additional software (API-defined, for the most part; see details of separate standard development effort for details) and hardware modules (including the ATC cabinet, with separate standard in development), support the variety of road tasks identified in the ATC Standards Overview (most recent version is 2.1, 8 Oct 02).

The expedited development process envisioned the use of a team of industry experts experienced and skilled in the establishment of requirements-based, environmentally hardened, field equipment standard. The project would be broken down into seven task areas, beginning with an architecture overview of the ATC, followed by five detailed task areas, and concluding with a project management plan for the standard development process. The project management plan submitted for this effort was approved by ITE, called for a specific number of review cycles involving the ATC Working Group and the ATC Joint Committee.

That effort was concluded and resulted in the circulation and ballot for Version 5.0 of the Standard. Unfortunately, the standard was not approved during the ballot process. Several vendors submitted objections to the ITE’s notice of intent to adopt, and the NEMA Section voted against adoption of the standard.

The ITE objections were discussed at an appeals hearing in February of 2004 and the objections were subsequently identified to be addressed in revisions to the standard. Those revisions were documented, but were not addressed due to the Negative vote by NEMA. NEMA formed a technical committee to review and modify the standard. In March 2005, those recommendations were made to the ATC controller working group, and a course of action was identified. At the June meeting, it was noted that many of the changes had not been made as directed during the working group meeting. Subsequently, the issues were documented, and volunteer and contractor efforts were launched to address the issues and complete the standard. The standard was completed and submitted to the ATC Joint committee for final ballot which approved submitting the revised ATC Version 5.2 standard for ballot by NEMA, ITE, and AASHTO according to the rules for each.

5 Need for the ATC controller standard

As agencies seek to resolve complex transportation problems through the use of ITS, their strategy often involves the use of multiple management applications that need to be concentrated in a given area. An example of this is the typical freeway to surface street interchange where there is a need for traffic control, motorist information, ramp metering, and dynamic lane assignment applications to all be coordinated and co-located at that location. Traditional solutions have relied on the implementation of individual single-purpose control equipment for each of the management applications within the strategy. This approach has left our street corners littered with control cabinets for each of the management applications and burdened local agencies with increasing costs associated with networking these devices, maintaining each individual component, purchasing sufficient support equipment and right-of-way for said equipment. The ATC controller standard defines a common computing platform that can safely and reliably perform these functions in a coordinated manner, thereby reducing overall agency costs while enhancing overall safety and reliability.

The Advanced Transportation Controller (ATC) standard has been developed to provide an open architecture hardware platform which can support the ITS cabinet, the existing NEMA cabinets
(TS2 and TS1) and the CALTRANS type 170 compatible cabinets for a wide variety of ITS applications. In this context the words “open architecture” mean that the system will include both public and private sector developers and will allow modular software cooperatively running on standardized and shared modular hardware platforms. This will provide cost-effective ITS functionality for a wide variety of applications.

To accomplish this goal, the proposed design optimizes flexibility for a variety of system configurations and installations. The general concept and model for the ATC is a field hardened, special function computer for embedded applications, which, with the appropriate software and hardware modules, could be asked to perform many different duties. Among the applications anticipated for the ATC are traffic signal control, ramp control, traffic surveillance coordination, lane use signal control, field (network) master control, general ITS beacon control, lane control, and other general access control.

6 List of Committee Members

6.1 Joint Committee

ITE Appointees: Gerry DeCamp, Andy Mao, Mohammad Talas, Ed Seymour, Bob Rausch, John Thai

AASHTO Appointees: Guillermo Ramos, Dave Holstein, Al Kosik, Ken Montgomery, John Renfro, Martha Styer

NEMA Appointees: Gary Duncan, Scott Evans, Ron Johnson, Mike Travers, Dave Miller, Tim O Leary

6.2 Controller Working Group

Douglas Acker, Ralph Boaz, Al Bonificio, Richard D’Alessandro, Gary Duncan, Ron Johnson, Andy Mao, Dave Miller, Bob Rausch, John Renfro, Sean Skehan, Donald Snyder, John Thai, Minh Tran, Siebe Turksman, Clyde Neel, Bob Russo

7 Other Material of Interest

Appendix III contains the paper “Advanced Transportation Controller Standards Overview”
8 Declaration confirming that any other known national and international standards have been examined with regard to harmonization and duplication of content, and that no significant conflicts with another known standard have been identified.

Other known national and international standards have been examined with regard to harmonization and duplication of content and there are no significant conflicts with other known standards.

9 Abstract of the Standard

Section 2 of the draft ATC Standard v.5.2 (see Appendix I) contains an abstract of the proposed standard.

10 Description of Alternate Processes

This standard followed the process as outlined in the contract between ITE and Siemens E&A - Gardner Transportation Systems, consistent with the Memorandum of Understanding between ITE, AASHTO, and NEMA that created the ATC Joint Committee and established procedures for subsequent standards development.

11 APPENDICES

I -Latest recommended draft standard ITS ATC Controller v.5.2 Intelligent Transportation (ITS) Standard Specification for transportation controllers (from ITE web site)

http://www.ite.org/standards/atc

II – User comments

A – memo of comments from Version 5.0 to version 5.2

III – Advanced Transportation Controller Standards Overview (from ITE web site)

http://www.ite.org/standards/atc/ATC%20Overview.pdf
APPENDIX I: ITS ATC Controller v.5.2 ITS Draft Standard
APPENDIX II: Memo of Comments, Rev 5.0 to Rev 5.2
APPENDIX III: ATC Standards Overview