This report assesses the performance of various traffic control devices which affect traffic on existing residential streets (as opposed to initial design features of new subdivisions). Detailed techniques for developing neighborhood traffic control plans including community involvement and technical evaluation elements are given.

This study was conducted in response to a research problem statement submitted by the City of Santa Ana, California. Research in traffic control devices is included in the Federally Coordinated Program of Highway Research and Development as Task 1 of Project 1A, "Traffic Engineering Improvements for Safety." Mr. H. Douglas Robertson is the Project Manager and Mr. John C. Fegan, Contract Manager.

Sufficient copies of the report are being distributed to provide a minimum of one copy to each FHWA regional office, division office and State highway agency. Direct distribution is being made to the division offices.

Charles F. Scherffey
Director of Research
Federal Highway Administration

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. The contents of this report reflect the views of the contractor, who is responsible for the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein only because they are considered essential to the object of this document.
STATE OF THE ART: RESIDENTIAL TRAFFIC MANAGEMENT

Daniel T. Smith, Jr., Donald Appleyard et.al

De Leuw, Cather & Company
Post Office Box 7991, San Francisco, CA 94120
w/ DKS Associates, 405 - 14th St., #610, Oakland, CA 94612
Berkeley Planning Associates, Berkeley, CA

The research program "Improving The Residential Street Environment" deals with control and restraint or management of traffic on local residential streets. This State of The Art report covers current practices in this field through 1978. The report assesses the performance of various control devices to affect traffic on existing residential streets (as opposed to initial design features of new Subdivisions). Included are diagonal diverters, half-diverters, cul-de-sacs, median barriers, speed bumps and undulations, stop signs, rumble strips and many other measures. The report also details techniques for developing neighborhood traffic control plans including community involvement and technical evaluation elements.
Contents

1 Introduction
- Neighborhood Traffic Management — A Definition
- Historical Perspective
- Purpose of This Study
- About This Report
- What Is to Follow
- Organization of the State-of-the-Art Report

2 Overview of neighborhood traffic management
- The Residential Street
- The Problem
- Causes of the Problem
- Goals of Street Improvement and Traffic Management
- Neighborhood Traffic Management
- The Need for an Organized Planning Process and Community Involvement
- Summary — A Note on the State-of-the-Art

3 Neighborhood traffic control devices and systems
- **Positive Physical Controls**
 - Speed Bumps and Undulations
 - Rumble Strips
 - Diagonal Diverters
 - Intersection Cul-de-Sac
 - Midblock Cul-de-Sac
 - Semi-Diverter
 - Forced Turn Channelization
 - Median Barrier
 - Traffic Circle
 - Chokers
 - Other Positive Physical Controls
- **Passive Controls**
 - Stop Signs
 - Speed Limit Signs
 - Turn Prohibition Signs
 - One Way Streets
 - Other Passive Controls
- **Controls Dealing with Driver Perception and Psychology**
 - Lateral Bars
Crosswalks 76
Safety Board 77
Odd Speed Limit Signs 77
Other Signs 77
Speed Actuated Flashing Warning 78

System Considerations 79

4 **Planning for neighborhood traffic management** 85
 Introduction 85
 Community Involvement 92
 Problem Identification and Needs Analysis 92
 Generating Alternative Plans 107
 Plan Selection 112
 Implementing Decisions 121
 Evaluating the Control Plan's Performance 125
 Modification and Recycling the Process 129

5 **Planning and design aspects common to all neighborhood management devices** 131
 Effects of Physical Barrier Devices on Emergency Service Vehicles 131
 Fire 131
 Police 135
 Ambulance Services and Private Emergency Travel 136
 Refuse Collection and Deliveries 136
 Transit 136
 Maintenance 136
 Violations of Traffic Barrier Devices 136
 Legal Considerations 130

References 143

Appendices

- **Appendix A** — Citizen Participation Resources and Techniques 147
- **Appendix B** — Selected References on Community Participation Techniques 151
- **Appendix C** — Traffic Operational Measurements for Neighborhood Protection 153
- **Appendix D** — Organization of Needed Technical Data 163
- **Appendix E** — Matrix of Cities and Devices 109
Figures

1. Typical Neighborhood with Traffic Related Problems 11
2. Solutions to Typical Neighborhood Traffic Problems 16
3. Glossary of Neighborhood Traffic Management Devices 17
4. Speed Bump 25
5. British Speed Undulation 26
6. Rumble strip Installations 29
7. Typical Rumble Strip Design 29
8. Temporary Diagonal Diverter — Berkeley, Ca. 31
9. Temporary Diagonal Diverter — Berkeley, Ca. 32
10. Typical Undercarriage Barrier 32
11. Temporary Diagonal Diverter — Berkeley, Ca. 33
12. Temporary Diagonal Diverter — Victoria, B.C. 33
13. Diagonal Diverter — Menlo Park, Ca. 33
14. Diagonal Diverter — Berkeley, Ca. 33
15. Landscaped Diagonal Diverter — Portland, Or. 34
16. Landscaped Diagonal Diverter — Oakland, Ca. 34
17. Landscaped Diagonal Diverter — Richmond, Ca. 34
17a. Diagonal Diverter, Minneapolis, Minn. 34
18. Alternative Diverter Locations 36
19. Implications of Cul-de-sac Location 37
20. Temporary Cul-de-Sac — Los Angeles, Ca. 38
21. Temporary Cul-de-Sac — Palo Alto, Ca. 38
22. Cul-de-Sac — Walnut Creek, Ca. 38
23. Cul-de-Sac — Berkeley, Ca. 38
24. Cul-de-Sac — Berkeley, Ca. 39
25. Cul-de-Sac — Menlo Park, Ca. 39
26. Permanent Cul-de-Sac — Palo Alto, Ca. 39
26b. Permanent Cul-de-Sac — Hartford, Ct. 39
27. Permanent Cul-de-Sac — Palo Alto, Ca. 40
28. Landscaped Cul-de-Sac — Palo Alto, Ca. 40
29. Landscaped Cul-de-Sac — Palo Alto, Ca. 40
30. Midblock Cul-de-Sac 41
31. Landscaped Midblock Cul-de-Sac — Richmond, Ca. 43
32. Midblock Cul-de-Sac with Park — Palo Alto, Ca. 43
33. Permanent Midblock Cul-de-Sac — Berkeley, Ca. 43
34. Semi-Diverter — Pleasant Hill, Ca. 43
35. Semi-Diverter — San Mateo, Ca. 44
36. Semi-Diverter — Walnut Creek, Ca. 44
37. Semi-Diverter Treatment — Walnut Creek, Ca. 44
38. Semi-Diverter — Berkeley, Ca. 44
39. "Star" Diverter 46
40. Partial Diagonal Diverter 46
41. Forced Turn Channelization — Seattle, Wa. 47
87. Citizen Participation in the Transportation Planning Process 90
88. Description of Participation Techniques Classified by Function 91
89. San Francisco. A Newssheet, Traffic in the Neighborhoods 97
90. An Innovative Approach to Soliciting Community Input 98
91. Madrona Neighborhood Questionnaire, Seattle 99
92. Resident Defined Traffic Hazard on Three Streets, San Francisco 103
93. Resident Perceived Noise, Stress and Pollution on Three Streets in San Francisco 105
94. Area Oriented or “Top-Down” Planning Strategy 108
95. Problem Oriented or “Bottom-Up” Planning Strategy 109
96. Example of Arraying Planning Data in Overlays 110
97. Community Meeting for Plan Selection 116
98. Effective Announcement Form For Community Meeting, Seattle, Wa. 117
99. Survey to Determine Resident Preferences Among Proposed Alternatives, Vancouver, B.C. 119
100. Flyer Distributed to Businesses and Residences, Seattle, Wa. 124
101. Survey to Determine if Temporary Devices Should Be Made Permanent, Seattle, Wa. 127
102. Survey to Determine Resident Reaction to Expansion of NTM Program, Vancouver, B.C. 129

1. Neighborhood Traffic Control Device Characteristics 22
2. Traffic Reduction Due to Use of Speed Undulations in Great Britain 26
3. Traffic Changes on Streets with Diagonal Diverters in Seattle, Wash. 31
4. Vehicle Speeds for Various Traffic Circles in Sacramento, Ca. 54
5. Speed Limits on Two Lane Streets in Selected United States Cities 67
6. Urban School Zone Speed Limits 67
7. Community Involvement Purpose by Program Stage 89
8. Techniques and Measures of Assessment and Evaluation 95
9. Street Classification 90
10. Technical Measurements for Neighborhood Traffic Management 154
11. Accident Comparison — West Berkeley Neighborhood Area 159
12. Accident Comparison — LeConte Neighborhood Area 159
The contributions of the many individuals who have aided in the preparation of this report are gratefully acknowledged.

Particular recognition is due officials in State and local jurisdictions who have taken the time to share with us their experiences in and insights to residential traffic management by aiding our research on site inspections, and by providing us with reports, data and photographs relating to traffic control in neighborhoods. Without their help this report would not have been possible.

We also wish to acknowledge the Technical Committees of the San Francisco Bay Area and Los Angeles sections of the Institute of Transportation Engineers for compilations of data on residential traffic control projects in their regions. Special thanks is extended to Los Angeles Committee Chairman Chuck Eccleston who graciously made available his full personal files on the subject matter.

Thanks are also due Terrence Bendixson and Christian Averous of the Organization for Economic Cooperation and Development (OECD) who provided advice on traffic restraint measures in the OECD countries and to the Transportation and Road Research Laboratory in the United Kingdom which shared its latest findings on the subject matter.
Preface

This "State-of-the-Art" report has been prepared for the urban traffic engineer or planner and all those concerned with control of traffic in neighborhoods. Traffic in neighborhoods has been a longstanding concern to the public but a concern to which professionals over the years have been unsympathetic or unprepared to respond. However, in recent times attempts at restraining traffic and its adverse impacts in neighborhoods have proliferated. Some schemes have had noteworthy success; others, though operationally successful, have generated opposition and controversy; others yet have not operated satisfactorily.

For the professionals, these efforts involve significant departures from customary practices—new applications of conventional traffic control devices, use of entirely new types of control devices, and changes in philosophy relative to the role of streets and of the professional in "managing" rather than necessarily "facilitating" traffic. Naturally, when a new element of professional practice evolves from isolated and independent efforts, communications of results from innovators to other practitioners lags. This report is intended to bridge the communication gap, to provide up-to-date information on the details of control devices used in neighborhood traffic management and on the techniques for planning neighborhood traffic control schemes.

In introducing readers to the findings of our research, the authors wish to affirm our commitment to the objectives of traffic management in residential areas. Sections of this report may seem to belie this. The facts are that traffic management is inherently controversial and numerous traffic management attempts have failed because of inappropriate control devices or breakdowns in the process of planning for them. We have called attention to these conditions at several points in the report. We have not done
this to discourage further traffic management programs; we have done so to prepare professionals and the community involved for controversy, and to aid users in coping with problems and pitfalls previously experienced by others.

Residential traffic management is a still rapidly evolving area of professional practice. This report explores the range of current practices; it does not necessarily define the limitations of good practice. Further experimentation and innovation is needed. Do not be afraid to try new measures which seem to be more reasonable and effective solutions to your problems than the devices covered herein.