Traffic Calming Fact Sheets
May 2018 Update

Speed Hump

Description:
- Rounded (vertically along travel path) raised areas of pavement typically 12 to 14 feet in length
- Often placed in a series (typically spaced 260 to 500 feet apart)
- Sometimes called road humps or undulations

Applications:
- Appropriate for residential local streets and residential/neighborhood collectors
- Not typically used on major roads, bus routes, or primary emergency response routes
- Not appropriate for roads with 85th-percentile speeds of 45 mph or more
- Appropriate for mid-block placement, not at intersections
- Not recommended on grades greater than 8 percent
- Work well in combination with curb extensions
- Can be used on a one-lane one-way or two-lane two-way street

Design/Installation Issues:
- ITE recommended practice - “Guidelines for the Design and Application of Speed Humps”
- Typically 12 to 14 feet in length; other lengths (10, 22, and 30 feet) reported in practice in U.S.
- Speed hump shapes include parabolic, circular, and sinusoidal
- Typically spaced no more than 500 feet apart to achieve an 85th percentile speed between 25 and 35 mph
- Hump heights range between 3 and 4 inches, with trend toward 3 - 3 ½ inches maximum
- Often have associated signing (advance warning sign before first hump in series at each hump)
- Typically have pavement markings (zigzag, shark’s tooth, chevron, zebra)
- Taper edge near curb to allow gap for drainage
- Some have speed advisories
- Need to design for drainage, without encouraging means for motorists to go around a hump

Potential Impacts:
- No impact on non-emergency access
- Average speeds between humps reduced between 20 and 25 percent
- Speeds typically increase approximately 0.5 to 1 mph midway between humps for each 100 feet Beyond the 200-foot approach and exit of consecutive humps
- Traffic volumes diversion estimated around 20 percent; average crash rates reduced by 13 percent

Emergency Response Issues:
- Impacts to ease of emergency-vehicle throughput
- Approximate delay between 3 and 5 seconds per hump for fire trucks and up to 10 seconds for ambulances with patients

Typical Cost (2017 dollars):
- Cost ranges between $2,000 and $4,000